CMSC 426 Principles of Computer Security

Cryptanalysis

1

Last Class We Covered

- Man in the Middle Attacks
- MAC
- Hashing
- HMAC
- Public Key Infrastructure
- Certificates
- Digital signatures

Any Questions from Last Time?

Today's Topics

- Cryptanalytic attacks
 - Attack methods
 - Attack types
- Attack types
 - Ciphertext only
 - Known plaintext
 - Chosen plaintext

Pseudorandom numbers

Cryptanalytic Attacks

Cryptanalysis

- Cryptanalysis is the process a cryptanalyst uses in order to discover the plaintext and/or a secret key
 (Cryptanalyst may also just be an attacker)
- Strategy of attack type used depends on
 Cryptanalyst's knowledge and access
 - Nature of the encryption scheme

Cryptanalysis Attack Methods

- Brute force
- Abusing and using primes
- Analyzing ciphertext (and sometimes plaintext)
- Use ~*~math~*~ to exploit weaknesses of algorithms

- "Non-traditional" attacks
 - Timing attacks
 - Glitch attacks
 - Social engineering/non-technical attacks

Brute Force Attack

- Attack attempts to "brute force" its way through the problem space to a solution
- Systematically check each and every possible key, encryption method, etc. until the correct one is found
 - Requires some way to automatically check results
- Simplest defense...
 - □ Make the problem space large too large to thoroughly test
 - One reason why key size keeps increasing

Abusing Primes

- Many crypto algorithms use prime numbers as a key component
- Diffie-Hellman uses a publicly transmitted prime p and a publicly transmitted primitive root g
 - Alice and Bob each secretly choose a number, and using ~*~math~*~ transmit more public numbers, then combine that info to form the key
- What if a lot of Diffie-Hellman implementations used the same p?
 This would allow an attacker to pre-compute discrete logs for that p
 (This would give an attacker a very small set to brute force from)

Information taken from https://weakdh.org/

Using (Factoring) Primes

- Many cryptographic algorithms rely on the product of two prime numbers as a key security component
- RSA uses the product of two secret prime numbers, p and q
 - Public and private exponents, e and d, are chosen within certain constraints relating to each other and these primes
- If *p* and *q* can be factored out of *n*, and *e* is already public...
 The problem space of possible *d* values shrinks significantly
 With quantum computing and Shor's algorithm, factoring is polynomial

Math Example #1: DES Round Analysis

- An m-round characteristic of a Feistel-type cryptosystem is a sequence $(\Omega_{in}, \delta_1, \Delta_1, \dots, \delta_m, \Delta_m, \Omega_{out}) = (\Omega_{in}, \Omega_{\Delta}, \Omega_{out})$
 - Where Ω_{in} and Ω_{out} are input and output differences. The pairs (δ_i, Δ_i) ; $i = 1, \dots, m$, are consecutive input and output difference for the round f_k .
- For example, if the input difference Ω_{in} = (δ_A, 60 00 00 00_x)
 The pair of difference (C_x, E_x) happens with probability 14/64
 And then we get the output Ω_{out} = (δ_A ⊕ 00 80 82 00_x,60 00 00 00_x)
 Etc...

Information taken from Dr. Jennifer Seberry's slides: https://www.uow.edu.au/~/jennie/CSCI971/Cs47104.ppt

Math Example #2: AES Differentials

- AES: each non-zero byte in delta input to a round contributes 2⁻⁶ or 2⁻⁷ to probability of output difference.
 - □ If difference input to a round is 0 except in one byte, probability specific difference occurs in output of the round is $\leq 2^{-6}$
 - □ If difference input to a round is 0 except in two bytes, probability specific difference occurs in output of the round is $\leq 2^{-12}$
- Entirely due to the S-Box other steps in round do not impact differential probability

Information taken from Professor Debbie Cook's slides: https://www.csd.uoc.gr/~hy590-82/lect5+6-cryptanalysis.ppt

Non-Traditional: Timing Attacks

- Side channel attack, where time taken to execute cryptographic algorithms is analyzed
 - Every logical operation takes time to execute, and time taken will often differ based on the input provided
 - Some versions of this attack may also measure power consumption
- For example, modular exponentiation (*e.g.*, *a* = *g^A* % *p*) has a run time that depends linearly on the number of '1' bits
- Effectiveness depends on knowledge of the hardware implementation and the crypto system in use

Non-Traditional: Glitch Attacks

- Side channel attack, which requires physical access to the hardware, and is often performed on things like smart cards
- Essentially, by introducing specific glitches, the CPU can be made to execute completely incorrect instructions
 - □ Glitch example: replacing a 5 MHz clock with a 20 MHz one
 - Result example: dump contents of memory to output

Can even be used to reverse engineer unknown block ciphers

Information taken from https://www.cl.cam.ac.uk/~mgk25/tamper2.pdf

Cryptanalysis Attack Types

Cryptanalysis Attack Types

Type of Attack	Known to Attacker/Cryptanalyst (assume the algorithm is always known)
Ciphertext only	Ciphertext they want decoded
Known plaintext	Ciphertext they want decoded One or more plaintext-ciphertext pairs
Chosen plaintext	Ciphertext they want decoded At least one plaintext-ciphertext pair, where plaintext was <u>chosen</u>
Chosen ciphertext	Ciphertext they want decoded At least one plaintext-ciphertext pair, where ciphertext was <u>chosen</u>
Chosen text	Ciphertext they want decoded At least one plaintext-ciphertext pair, where plaintext was <u>chosen</u> At least one plaintext-ciphertext pair, where ciphertext was <u>chosen</u>

Information taken from Computer Security (Stallings & Brown)

Ciphertext Only Attack

- Most difficult attack/analysis to pull off
 - Analyst may not even know the encryption algorithm used
- Assume that the analyst still has <u>some</u> knowledge of plaintext
 What language or format it exists in
 - Some plaintext messages may even be in a standard format
- Every modern cryptographic algorithm has been vetted to not be susceptible to this attack
 - □ But coding up your own version of the algorithm hasn't been vetted!

Known Plaintext Attack

Analyst has access to at least one plaintext-ciphertext pair

- Idea is that analyst uses information about the plaintext to begin to make sense of the ciphertext
 - Patterns and repeated words or phrases in the plaintext may have matching output in the ciphertext
 - If that output is spotted in new ciphertext, the plaintext can be assumed to be known, at least for that piece
- Integral to breaking the Engima machine during WWII

Chosen Plaintext Attack

- This attack requires that the analyst has some way of requesting or obtaining the ciphertext for some given plaintexts
 May be achieved with social engineering if not directly
- A variation on this is CPA2 (Adaptive Chosen-Plaintext Attack), where the analyst can request ciphertexts in multiple batches
 Normally, only one batch of plaintexts is "allowed" to be encrypted
- Based on the information gleaned, analyst's goal is to extract the key used for the encryption

Chosen Ciphertext Attack

- Like chosen plaintext attack, may be adaptive (multiple "batches") or non-adaptive (single "batch")
 - Adaptive is called CCA2 (adaptive chosen-ciphertext attack)

Chosen Text Attack

 Combination of Chosen Plaintext Attack and Chosen Ciphertext Attack

Neither are used very commonly

Pseudorandom Numbers

See additional slides for RNGs

Announcements

- Lab 3 is scheduled to come out tomorrow
 - (Earlier than it says on the website schedule)
 - Topic will be cryptanalysis, and no VM will be involved
- HW1 is being graded, HW2 and Lab 2 will be graded following
- Also working on getting Paper 1 (and Paper 2&3) graded
 Paper 2&3 is due tomorrow night at midnight